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Recently, superconvergence relations have been proposed for certain scattering amplitudes with spin
at fixed momentum transfer. Unfortunately, the kinematics and high-energy behavior of ~N scattering
do not permit any such relations for this process. If, however, one assumes Regge-pole dominance at high
energy, one can write superconvergence relations for certain amplitudes from which the leading Regge-pole
contributions have been subtracted out. Assuming resonance dominance in the low-energy region, one has
a sum rule relating these resonances to the Regge parameters. Comparison with experimental data in the
forward direction shows that the Regge contribution is small and that the dominant resonances are the
N and N*; the sum rule is then approximately satisfied. Completely ignoring the Regge poles and making
certain additional assumptions leads to a relativistic version of the static model, which gives a relation,
for instance, between the N and N coupling constants. This relation is quite well satisfied. In addition one
may derive the Adler PCAC (partially conserved axial-vector current) self-consistency condition. These
results are shown to be related to the vanishing of the equal-time commutator of the pion currents.

I. I5'TRODUCTION

M NE of the most successful theories in strong-
interaction physics has been the static model of

E-wave z.S scattering. ' If one uses the X/D method
with linear D,' one is led to the famous Chew-Low
relation' y~~2, ~i2=2y3~2, 3~2 between the residue of the
nucleon pole, y~i2, ~~2, and the residue of the S* pole,
F3~2,3~2. Unfortunately, this result is usually destroyed
if one does a more detailed calculation, which rarely
leads to a linear D function. Another way of getting the
Chew-Low result is to use partial-wave supercon-
vergence, e assuming X and ft f*dominance (see Appendix
A). However, this uses the properties of the static model
at infinite energies, the very region where it is least
likely to be correct. Of course, one can always write a
superconvergence relation for the relativistic partial-
wave amplitude, but it is not clear how useful such a
relation will be, since the left-hand, cut is not very well
known except near the physical threshold. '

In the present paper we have tried to avoid. some of
these difhculties by looking at amplitudes at fixed
momentum transfer t, rather than at 6xed. angular
momentum. Superconvergence relations for such ampli-
tudes have been shown by de Alfaro, Fubini, Furlan,
and Rossetti to hoM for certain higher-spin amplitudes.
They have even been suggested for pseudoscalar meson-
baryon scattering in the t-channel 1=2 state. ~ Un-
fortunately, it can be shown that no 6xed-t supercon-
vergence rule can hold for the xE amplitud, e. We can,
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theory.

'V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.
Letters 21, 5 (1966).

'P. Babu, F. J. Gilman, and M. Suzuki, Phys. Letters 24B,
65 (1967').

160

however, de6ne a modi6ed, amplitud. e from which the
leading Regge-pole terms have been subtracted. out.
If we assume Regge-pole dominance at high energies,
this new amplitude will fall sufficiently fast (i.e.,
faster than s ') to be superconvergent. '

In Sec. II the modi6ed superconvergence relation,
which expresses an integral over the absorptive part
of a mE amplitude in terms of Regge parameters, is
derived. In Sec. III we look at this relation for vanish-
ing momentum transfer by expressing the absorptive
part in terms of low-energy resonance parameters. It
is found, that the E and Ã* dominate all other reso-
nances. For the Regge parameters we use the results of
the recent analysis by Chiu, Phillips, and Rarita, who
found two sets of parameters which can 6t the high-
energy xA" data. Their 6rst set leads to a large Regge
term, and it is not possible to satisfy our relation. The
second set gives a comparatively small Regge con-
tribution. The X and. E* are then the dominant terms
and are related essentially through the usual static-
model relation. Since this is in fact correct experi-
mentally, our relation is thus satisfied. approximately.

In Sec. IV, we make the approximation of dropping
t-channel Regge contributions completely, since the
analysis of Sec. III shows them to be small. This
approximation amounts to saying that one of the xS
amplitudes is in fact superconvergent. The resulting
superconvergence relation is examined for nonvanish-
ing t, and is shown to lead. to a relativistic version of the
static model. An in6nite number of resonant states is
needed to satisfy our relation exactly, but for low-

lying resonances the relations virtually decouple into
a set of statements, each concerning only a 6nite
number of resonances. (This decoupling is exact, in the
limit of complete mass degeneracy. ) One set of states

After the completion of this work, we came to know that the
idea of writing superconvergence relations for such modified
amplitudes has also been proposed by A. A. Logunov, L. D.
Soloviev, and A. N. Tavkhelidze LPhys. Letters 24B, 181 (1967)g.
These authors did not apply it to the 8+ amplitude, however.' C. B. Chiu, R. G. N. Phillips, and W. Rarita, Phys. Rev. 153,
1485 (1967).
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which might be used to. satisfy these relations consists
of the 1V, Ã*(1238), and their Regge recurrences. Under
certain circumstances, it is possibIe to satisfy the super-
convergence relation by assuming only that the reso-
nances corresponding to a single value of the orbital
angular momentum are mass degenerate.

We can also derive the Adler partially conserved
axial-vector current (PCAC) self-consistency condition
on wX scattering, " either by using static-model kine-
matics or by assuming near-degenerate masses for
the resonances which sg, turate the superconvergence
relation.

We show that a theoretical basis for superconvergence
is the statement that the equal-time commutator of
two pion currents vanishes. This helps to understand
why superconvergence is closely related to static-model
results, in light of the work of Cook, Goebel, and
Sakita, who got P-wave static-model results from the
requirement that the dipole moments of the pion
currents formed a commutative Lie algebra. "Because
such algebras are noncompact, one can also understand
why an infinite number of states is needed to satisfy
the superconvergence relation.

A possible theoretical link between the Adler PCAC
relation and superconvergence is a model of exact
(or nearly exact) SU(3)&&SU(3) with vector and axial-
vector Yang-Mills mesons. For exact symmetry, we
follow Nambu" and couple zero-mass pions to the axial-
vector current in such a way that the axial-vector
current is conserved. In this model, Adler's relation
follows at once, but this model has the additional
property of a superconvergent 7' amplitude.

f(s)= ds' Imf(s') (—s'—s)
—'.

Suppose now that this function behaves for large s as
s, with a( —1. Then it follows from Eq. (1) that for
consistency we must have a "superconvergence"
relation'

ds' Imf(s') =0. (2)

II. MODIFIED SUPERCONVERGENCE RELATION

Let the function f(s) satisfy an unsubtracted dis-
persion relation

know its asymptotic behavior. This is usually most
easily obtained from a knowledge of the leading Regge
poles, which give a behavior s &o ",where s= (energy)',
e is an integer )0, and n(t) is the Regge trajectory.
Thus if n(t) —ti( —1, we have superconvergence. Now
in mS scattering we have two invariant. amplitudes A
and 8, which give the T matrix through the relation

T= A—+,'iy-(qi+qs)B, (4)

8—8R,«,&const s ' as s —+ ~,
A —AR«, &const as s ~ ~ .

We can therefore write a superconvergence relation for
8—8R,«,. We still cannot write one for A —AR,«,
unless we make the much stronger assumption that
there are no trajectories with o.& —1. We shall there-
fore not consider the A amplitude any further in the
present paper.

Actually, of the two 8 amplitudes 8+ and 8 corre-
sponding (except for constants) to the 1-channel I=O
and I= 1 states, only the 8+ amplitude gives a non-
trivial superconvergence relation. This is because
ImB (s', t) is antisymmetric with respect to the variable
(s'+-,'t M' 1), so —that —when we integrate it over all
s' for fixed t we get zero identically. (This, of course, is
also true of ImB (s't). On the other hand, 1mB+(s', t)
is symmetric in this variable, so that Eq. (5) becomes

where q~ and q2 are the initial and final meson four-
momenta, so that t= (qi —q&)'. A Regge pole will give the
behavior A ~s" and 8~s '. Now the leading Regge
trajectories are the P, P' in the I=o and the p in the
I=1 channel states. Since all of these have rr&0 (at
least near t= 0) we cannot have n n&——1, and so there
is no superconvergence relation for the amplitude itself.

Suppose we now assume that the P,P', and p are the
only trajectories with rr(0))0. This is strongly sug-
gested by high-energy data, which do not seem to
require any other trajectories, and seem to imply that
all other singularities are quite far to the left in the
angular-momentum plane. , Of course, there is always
the specter of Regge cuts, which would certainly
interfere with any superconvergence relations, but
throughout this paper we shall ignore any possible cut
contributions. If, therefore, we subtract out the explicit
P, P', p contributions we will have

If u(2 we can derive an additional relation

ds's' Im f(s') =0, etc. (3)

If we wish to apply this procedure to the invariant
amplitude at fixed momentum transfer t, we must first

"S. L. Adler, Phys. Rev. 137, 31022 (1965)."T.Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
3S (196S)."Y.Nambu and G. Jona-Lasino, Phys. Rev. 122, 345 (1961).

erg + ds' ImLB+—B+it,«,j=0,
2

M +1—t/2

where the first term is the contribution of the nucleon,
with g'/4' = 14.4.

Unfortunately, the 8+ amplitude is not related in a
simple way to cross sections. One way of testing Eq. (6)
would be to Inake a partial-wave approximation
8+ 8+pw for sQ sp and the Regge approximation
8+ 8+R,«, for s&sp, where sp is the approximate
separation point between the low- and high-energy
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(-(-)=L2-I (-+l)X-'"I (-+1)j-',
t

we get an expression which can be compared with the
parametric form given by Chiu, Phillips, and Rarita:ds'$ImB+pw Im—8+it,gg, l =0. (7)

regions (sp is related to the strip width of Chew and where
Frautschi"). Then we would have

In evaluating this expression it is not too important
which specific Regge form is used, provided that it is
a good approximation for s&sp. Thus one could use
either the canonical form or the asymptotic form. The
Regge contribution to Eq. (7) will be essentially the
same provided these forms give approximately the same
amplitude for s&sp. This is discussed in more detail in
Appendix C.

To evaluate ImB+pw, we could, approximate it in
terms of resonances. Actually Barger and Cline'4 have
argued that the resonance and Regge regions may, in
fact, overlap. They were able to explain a consid, erable
amount of intermediate-energy data by a superposition
of resonances and a Regge background. By using the
asymptotic form for the latter they were able to re-
produce the backward n. p elastic-differential cross
section at lab mornenta as low as 1.6 BeV/(: (s 200).
'Thus a more useful approximation than the one leading
to Eq. (7) might be set 8+~8+r(„ for $(sp, 8+~8+R„
+8+R«„ for sp($(si. Then si would be some point
just above the highest resonance, while sp is the lowest
yoint up to which a Barger-Cline analysis is applicable
(we could take sp~200). With this approximation
Eq. (6) becomes

8= Dp ex—p (Dit)n'(n+ 1)(Er/Ep)
XL(e '"~—1)/sin7rnj, (10)

where 23fEI,——s—3P—1, and Ep is a scale factor
corresponding to 1 BeV. Such a comparison at t=0
gives

g(0) = —Dpn(n+1)m()' —~C(n) —' (11)

where mp ——Ep (pion mass).
Let us return to a general value of t for the time

being. From Eq. (9), for s')M'+1 ——,'t,

1mB+a.„,(s', t) = Q g(t) 2p, q,MLS'+ (pi+q, )'j

(s+pP+ qP)P'i — ~BLS'+ (p,+q,)'j . (12)
& —2pq, i

If we integrate over s', we 6nd for the last term in
Eq. (g)

ds' 1mB+a„„(s',t)

sp+pi +qi )=2p,q, g g(t)P. ~. (13)
2piq(

ds' ImB+R„— itegge= 0 ~ (g) If we use the asymptotic form for P, then at t= 0,
Eqs. (13) and (11) give

Since sp is fairly low, we might expect the Regge term
to be comparatively small. We shall see in the following
section that this is in fact the case.

III. SUM RULE AT t~0

ds III18 aegge ($ pO)

/sp 3P 1)——
= 2Mmp g D()n(n+ 1)

~ ~

. (14)
2Mmo

To evaluate Eq. (7) let us first consider 8+R,gg, . T l t I 8+ d
~

Thecano»calform"'sa«uallyabnost the»me as the t' 1 " d t t f d 6 't ' t ' ' I-
asymptotic form for s& 200:

8+=—' (8'"+28'"), (15)
B.-.g..(s,t)= Z . LP.(i)'(-si)-P. (i) (s~)j, (9)

&,&' sinvrn(t)

where
2ptqpt=s+pP +qi &

pp =4t 3P qp=-,'t—1. —
Here M=nucleon mass, with pion mass=1, and g(t)
is a function related to the residue of the pole (P
and P') we are considering. If we use the asymptotic
form

P.(s,) C(n)s, ,
"G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).
I V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966);

V. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966)."V, Singh, Phys. Rev. 129, 1889 (1963).

th)Bi(s,O) =pi —
i( (1+1)LE—3II(l+1)jf,+r(W)

& (qsl
+l(E+Ml) fi '(W) } (16)

and fi+I(W) is the partial-wave amplitude correspond-
ing to total angular momentum J=l+ ,'and energy-
W=gs. If we have a resonance at W=W)i with a
partial width of I'&+ for decay into the m.E channel, we
will have a contribution

Im f, '(W) = r'8(W W&), — (17)—
2g

"See, for instance, G. F. Chew, M. L. Goldberger, P. E. Low,
and Y. Nambu, Phys. Rev. 106, 1337 (1957).
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TanLx I. Contributions to (4s)~J'ds' ImB+a„ from each bound
state or resonance, using Eqs. (15)—(17). All masses and partial
widths F are in MeV and are taken from the Particle Tables
prepared for the XIII Conference on High-Energy Physics. &

Resonance 1~(4Z, 2Z) P (MeV) (4s)~J'ds' ImB+

hatt (940)
N1/2'(1400)
NIP*(1570)
N, / *(1518)
N &

*(1700)
N, *(1688)
N / *(1688)
N1/2*(2190)
N1/g*(2650)
N8/g*(1236)
N3/2*(1670)
Nap*(1920)
N3 is* (2420)
Esses" (2850)

1/2'(p»)
1/2+(pn)
1/2 (su)
3/2 (d13)
1/2 (sI&)
5/2 (d»)
5/2+ (/1 5)
7/2
11/2
3/2+ (pas)
1/2
7/2+
11/2+
15/2+

120
39
40

216
35
73
60
21

120
79

100
27.5
9

14.4
2.22
0,02
1.27
0,10—0.55
2.58
1.27
0.52—14.82
0.08—3.51—1.05—0.40

a Proceedings of the XIII International Conference on High-Energy Physics,
Berkeley, California, 1W6 (University of California Press, Berkeley, Cali-
fornia, 1967).See also Ref. 17.

with s~~(2M)s~180. Thus the total contribution of
the left-hand side of Eq. (8) is ~47rs(4.7). Since
srgs 4~'(14.4), our equation is therefore satisfied to
about 30%.

In view of the difhculty of determining the Regge-
pole contribution to 8+ from experimental data, one
might well wish to consider the analysis of this section

"A. M. Rosenfeld et al , Rev. Mod. Phy.s. 39, 1 (1967).

in the narrow-width approximation. If we combine
Eqs. (15)—(1'/), we obtain an expression for J"ds'1mB+.

The various resonance parameters we have used were
taken from Ref. 17. We have tabulated in Table I the
contributions of the various particles to ImB+R„. We
see in particular that the contribution of the X*(1236)
almost cancels the contribution ~g'=4s.s(14.4) of the
E. This, of course, is just the usual conclusion of the
static model, which assumes that the X and E* are
the only particles present, and that there are no
t-channel contributions. It is trivial to show in this
limiting case that Eq. (8) is equivalent to the Chew-
Low result.

In our relativistic case, of course, we do have other
contributions. From Table I, however, we see that the
contribution of each of the other resonances is quite
small compared with that of the Ã*. If we add them
all up, we get 4s'(2. 13), which is also not too large
compared with the E*.

The remaining relativistic term is the Regge con-
tribution (14). Here, unfortunately, the Ds's are very
poorly known. Chiu, Phillips, and Rarita give two
possible solutions s We have chosen their solution (b)
because it has the property of allowing a secondary
bump in the elastic differential cross section, similar to
that observed. We then get

80

ds' ImB+n, ss, (s',0)=4s'X 2.6,

from a diferent point of view, and regard the modified
superconvergence relation as an additional constraint
to be imposed on the Regge parameter d.etermined
from the experimental data. Needless to say, the
parameters we had to use for some of the high-energy
resonances are hardly known much better. Indeed, it
is not very likely that we have even included all the
resonances that occur in xE scattering. The static
mod, el, for instance, would suggest resonances in the
pss, ds7, and dss states (see Appendix A). Their inclusion
would. certainly a8ect our results, although it is un-
likely to change any of our qualitative conclusions.

sgs+4s. s Q Cr &z'(sz)
qz(E~ —M)

where

~aI'~+' ~a~(i+1) '
&~'(sz)— &i'(sz)

qz(Ez M) — qz(Ez+M)
~'Z~ &t—1&++ I'i'(sn) =0, (19)
qz(Ez+M)

CI=3 if I=-,',
lf I=2

q

and the subscript E denotes that we are to evaluate at
TV= 1/t/"g. Of course, we are to set I'=0 whenever there
is no resonance in a given state.

IV. SUPERCONVERGENCE AND THE
STATIC MODEL

In the last section, we found that the Regge-pole
contribution was small compared to any single reso-
nance. In this section, we shall simply drop the t-channel
Regge-pole contribution altogether. The consequence
is a sort of relativistic static model, which can be based
on the hypothesis that the equal-time commutator of
pion currents vanishes. The essential difference be-
tween superconvergence for fixed t (as we consider
here) and superconvergence in the partial waves (fixed
coso) is that we are evaluating the contribution of a
given intermediate state in the same way as we would
calculate the pole graphs in a relativistic fieM theory,
using the appropriate Feynman propagator. Crossing
syDUnetry becomes trivial to satisfy, and there is no
need to project out partial waves with their attendant
left-hand. cuts.

To evaluate ImB+R„we use the expansion

P~t'(s) E((s)—
ImBr (s,t) =erg

E+M E M—
-E( t'(s) Pg'(s)-

XImf~+ — — Imf~, (18)
E+M E M—

where s=1+t/2q'. If we insert Eq. (18) into Eq. (8)
using Eqs. (15) and (17), we obtain
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Suppose we assume complete mass degeneracy. The
sit are then all equal, and Eq. (19) becomes an expan-
sion in the P~'. Since these form an orthonormal set,
each coefficient of Pg' must vanish separately:

F, r Ft+
mg'iln+4n' Q CI

qg Eg—M

F (&+~)— F (&—&)+
(20)

Actually, the last term is usually quite small. In the
static limit it is exactly zero. We therefore have the
approximate equation

s.g'+4tr' Q CI
S„F, r H/'gF)+r

q g (Es M) gg (E—tt M)—=0. (21)

It is interesting to note that, within this approximation,
Eq. (21) satis6es Eq. (19) even if we only assume mass
degeneracy for the particles in a given orbital angular-
momentum state l.

If we keep only the It'/ and It'/* for /= 1, Eq. (21) is
almost exactly satisied experimentally if we take for
8'g the mass of the E . In the static limit it is just the
usual Chew-Low result y~~2, ~~2=2y3~2, 3~2. For l=2, we
evaluated the various contributions in Eq. (21) by
assuming that each reduced width in the degenerate
case is approximately the same as it is for the corre-
sponding physical resonance. Since E—m ~ q' at thresh-
old this means that we must set

G)g =E
8'gF)gr

gR (EIt—3ll) degenerate

+'aFig
(22)

pie" '(Elt —M) physical

It is then found that the d~a and d~s resonances alone
satisfy Eq. (21) very poorly. This is not very surprising,
since the static model, for instance, suggests the exis-
tence of dgg and dgg resonances (see Appendix A).
Indeed, it is simple to check that if we use static
kinematics Eq. (21) is exactly satisfied by the solution
of the d-wave static model.

The highest orbital angular momentum we have
checked is l=3. Here we have the two 6rst Regge
recurrences of the E and Ã*, the E*(1688) with
J = g+, and the Ã*(1920) (-,'+), which are also
approximately consistent with the static model. ""
If we use the experimental values for the partial widths
of these resonances, we get (Gg '"/Gg+'")~3. Equation
(21) for l= 3 predicts (Gg '"/Ge+'") = 2, which is
certainly consistent with the experimental value in
view of the experimental and theoretical uncertainties.

The exact relation (19) without mass degeneracy
» L. A. P. Ba16,zs, V. Singh, and S. M. Udgaonkar, Phys. Rev.

139, 3j.313 {1965).

1 1
A+= — ds' ImA+(s', t) +

7r -s —s s —Q
! I (25)

cannot be satis6ed for any 6nite number of resonances.
In the limit of mass degeneracy, one possible infinite
sequence of states would be the E, E*,and their Regge
recurrences, that is, baryons with I=—,', 7=-,' —', —,'
and I=-,', J=$, —,', 11/2, ~,. In fact, the values given
in Table I seem to indicate that these are in any case
the dominant resonances in the mE problem. In the
mass-degenerate limit, (20) is satisfied when the widths
of all the I=-,' resonances are equal, and equal to twice
the widths of all the I=—,

' states. If mass degeneracy is
not assumed, and the exact relation (19) is confronted
with experiment using only the four lowest states
$X, E*, 1t *(1688),3il'*(1920)7, the 1V and lit'* contribu-
tions cancel to a very high degree of accuracy. We shaG„
as in (21), ignore the terms in (EIt+M) '. The co—n-
tributions of the Ã~(1688) and Ã*(1920)are ambiguous,
since there are actually three relations to be satisfied',
corresponding to the coeKcients of P, t, and P, and
these relations would be the same only if these two
resonances had the same mass. It turns out that the
coeKcient of t in (19) very nearly vanishes when we
insert experimental paritial widths and masses, but the
relations for the constant coefficient and the P coeK-
cient are satis6ed only to about 20-30% of the sum of
the absolute values of the terms in (19). This is, of
course, of the same order as the contribution of t-channel
Regge poles, which we are ignoring in this section, so
that the agreement may be considered satisfactory.

The superconvergence relations of this section have
another interesting con.sequence: They give (approxi-
mately) the Adler self-consistency condition in the A+
amplitude. "This condition says that

A+(v= vg=0 ate=0) =g'/M (23)
where

v= (s—u)/4M, u= 2 (M'+1) s t, vga =—( —
tI,'+t)/4M—

and q& is the momentum of one of the pions. Recall that
Adler derived (23) from the PCAC hypothesis, which
has not yet been used in the present work. We shalI
interpret the condition (23) as holding at the point
S=N=3P, t=o, with the pion mass p set to zero every-
where. (This is slightly different from Adler's original
version, which had only one pion off the mass shell. )
To see how it arises, we insert the expansion

W+3II
ImA'(s, t) =4lrg &t+~ (s)

E+M
W—3II W+M

Pt t'(g) Imft+' I'g t'—(g)
E M—E+M

8'—M
+ I' t'(s) Imft ' (24)

E—M

into the dispersion relation for A+= ~~(A't +2A'I'):
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If we make the resonance approximation (17), we obtain

Cr (W&+Ml ( 1 1
A'=4 2 —

I IW LI'+'3'+'( )—I'-'3'-'( )ll +
I, l qg EEg+M J E3Eg S—M gP u)—

Cr(Wg —Mi ( 1 1
lW (I'-' —I'+'» '( ) I

+
I

(26).,~q, &E, Mi— ~;—s M.s—u)

In (23), the nucleon pole is not included, of course. We evaluate (23) at the point t= 0 (or sa ——1), s=u= M', to get

16mM33I'33 CgW~
A+(s=u=M', t=0) = +8m Q Pt'(1)

3q»(Mss+M) (E»—M) &,r; tps qz

I (~—~)+ I (~+~)— Fg I g+

(27)
(Eg+M) (Wg M) (E—g M) (Wg+—M)

where we have explicitly isolated the contribution of
the 33 resonance. The terms in brackets are small;
indeed, in the limit of complete mass degeneracy, they
would vanish by (19).Even without complete mass de-
generacy, we argue as follows: The first term in brackets
is less than the second by a factor (W~ —M) (Wn+M) '
t remembering that En&M= (W~&M)'/2W~ when

p,'=Oj. If this term is ignored, then the second term
will vanish by (21), as long as masses corresponding to
.the same value are degenerate. Then A+ is dominated
by the 33 term. But our previous superconvergence
relation (21) says that the 33 term in (27) is related to
the nucleon-pole parameters. Finally, we get

A+(s=u=M' t=u'=0)~2gs/(Mss+M) (28)

which, of course, would be the Adler relation in the
limit of mass degeneracy.

Actually, if we are willing to make the static approxi-
mation for some of our kinematic factors, we can easily
derive the Adler result without making resonance
approximations, degenerate or otherwise. Comparing
Eqs. (18) and (24) directly, we see that

ImA (s, tr) = —(W—M) ImBr(s, t) (29)

if we drop the terms which would vanish in the static
limit. From Eq. (25) we thus have

1 2(W' —M)
A+(s =u, t = 0)=— ds' ImB+(s', 0)

W M
( )

ds' ImB+(s', 0),

where we have made the static approximation
W'=M))1. Using Eq. (7) we are inunediately led to Eq.
(23), if we ignore the Regge term, which represents high-
energy. effects, and which, as we have seen, is small.

I

V. THEORETICAL SPECVLATIONS

The original approach to superconvergence' was
via current-corrunutation relations. We might ask if

"S.Fubini and G. Segre, Nuovo Cimento 65, 641 (1966).

there is a corresponding commutation relation for pion
currents which reproduces our modified supercon-
vergence relations, in particular the relativistic static
model of Sec. IV. Such a corrrmutation relation between
operators would furnish a global characterization of
modified superconvergence rules, to replace the large
set of individual rules which hold for invariant ampli-
tudes for a specific process (e.g., ~1V —+ m.lV*). This kind
of program has already been carried out for vector
currents by Bardakci and Segre."

It is a general rule that the behavior of a scattering
amplitude at large values of the invariants depends on
some sort of equal-time commutator. This concept has
been explored in detail by Bjorken, "and Cornwall" has
shown how the same analysis can be carried through
using a modified form of the Jost-Lehmann-Dyson
representation. A similar analysis for xS nonforward
scattering has been made by Domokos and Karplus, 23

and we refer the reader to that paper for details. I.et
us write a commutator between two nucleons in the
Breit frame y= —y':

(P'IL~ ( 0),~'(y 0)ll p)= l """3(—y)C(t)
+i8 sr)I,5(x y)D, (t)—, (31)

D, (t) = —('/M)7~ ( Xp),AD(t),

where n, P, and 7 are isospin indices, J is the pion
current, and t= (P—p')'. Karplus and Domokos"
relate C and D to the electric isovector and magnetic
isoscalar form factors, respectively. Whatever C and
D may be, they come from t-channel exchange processes,
and we might then follow the principles of the Chew-
Low static model by simply setting C and D=O, which
amounts to ignoring t-channel exchange processes
completely.

The relation of (31) to superconvergence is found
from Eqs. (15) and (16) of Karplus and Domokos:

v ~ ao: B+(v,t) —iMD(t)/v
(1 t/4M')'"A (v&t)+v—B (v, t)~ iC(t)/v. (32)—

'0 K. Bardakci and G. Segre, Phys. Rev. 159, 1263 (1967}.
s~ J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
~' J. M. Cornwall, - Phys. Rev. Letters l6, 1174 (1966}.
~' G. Domokos and R. Karplus, Phys. Rev. 153, 1492 (1967}.
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1
dv ImB+(v, t) =0, (34a)

g )1/2
11—

I
ImA (v, t)+v ImB (v, t) =0.

4M)
(34b)

The 6rst we have already explored. in some detail in
Sec. IV. Although we have not yet carried, out a de-
tailed analysis of the second rule for t/0, it is easy to
study (34b) for t=0, where the integrand is simply
related to total cross sections. Preliminary calculations
seem to indicate that it is in fact satisfied (see also
Ref. 8). It is very instructive to con.sider it in the
approximation saving only the N and N*. The result
is the condition

M (E M) g' =M*(—E* M)—
&( [(Sm./3)M*I'*/q*(E* —M)j, (35)

where E and E*are to be evaluated at 5=M', S=M*',
respectively. We have factored out M(E M) for-
each pole for the following reasons: If M(E M) is-
removed from the left side of (35), and M (E*—M)
from the right, the resulting equation is just the con-
dition arising from (34a). Thus, if N and N* were mass
degenerate, (34b) would be redundant. As it is, if one
puts physical values into (35), the two terms have
opposite signs. But both terms contribute only a very
small amount to the full integral (34b), and there is
every reason to believe that higher resonances will

correct the situation. They contribute a tiny amount
because of the factor E—M, which is of the order

p /2M. At this stage, therefore, it is eminently plausible
to accept (33) as a relativistic statement of the static
model. Of course, (33) is only an approximation, since
the functions C and D of (31) are certainly not zero.
But we might use, e.g., the model of Karplus and
Domokos to evaluate the corrections to the static
mod, el which come from t-channel vector-meson ex-
change, using Eq. (32).

Equation (33) is relevant to the static model as
expressed. in the strong-coupling theory, as Cook,
Goebel, and Sakita have pointed, out."These authors
consider a commutative algebra formed from the dipole
moments of the pion current, and show that a (neces-
sarily infinite) number of resonances, beginning with
the X and E*, form a representation of the algebra.
Most of these resonances have I&-,', and therefore do
not appear in ~E scattering. The present authors are

Clearly, if C and D vanish, we get the superconvergence
relations. We propose, as a relativistic generalization of
the static model, that pion currents commute on the

light come:
8(x')P' (g),J (0)j=0, (33)

which amount to setting C and D equal to zero. We
get two superconvergence rules:

currently exploring the consequences of Eq. (33) when
sandwiched between higher resonances, and we hope
to report on this work in the near future.

The Adler constraint on A+ depends only on PCAC
and nothing else, yet we were able to derive it using
only superconvergence, and. not PCAC. One possible
link between PCAC and superconvergence is a hypo-
thetical scheme to enforce nearly exact chiral SU(2)
&&SU(2) symmetry with the aid of V and. A Yang-
Mills mesons, plus pions and a sigma meson. It is
easiest to begin by thinking of a world, where SU(2)
XSU(2) is exact, and the pions have zero mass, as
proposed by Nambu. " PCAC can then be gotten by
giving the pions their physical mass. One begins by
requiring that the amplitude T„„(k',k',p', p') describing
the elastic scattering of a baryon (momentum p')
and an axial-vector Yang-Mills meson (momentum
k') obey k 'T""=k 'T&"=0, in the limit of exact chiral
symmetry. Since pions couple to axial-vector mesons,
part of this constraint involves mE scattering. If we
describe mS scattering in terms of resonances plus
Yang-Mills quanta exchanged. in the t channel, the
resulting conditions appear to be modified supercon-
vergence conditions. Details of this approach will be
published later.

VI. CONCLUSION

We have seen that it is possible to write a modihed
superconvergence relation for the 8+ amplitude, which
relates the low-energy resonances to high-energy Regge
parameters. The later term is small and it is found. that
the relations between the resonances agree more or
less with the predictions of the static model. In a sense,
then, our approach can be thought of as a relativistic
justification for the success of that model.

Of course, if we are willing to assume that there are
no resid. ual singularities in the angular-momentum plane
with 0.& —1 when we extract the P,P' and p contribu-
tions, we can write additional relations. We have a
superconvergence relation for (A —A a,«,) as well
as one for v(B —B R,«,). Actually, the sum of these
two is particularly convenient at t=0, since the
imaginary part is simply related to the total cross
section through the optical theorem. So far, only
preliminary calculations have been made, but these
seem to indicate that this relation is in fact satisied.

In addition to superconvergence relations for ampli-
tudes it may be useful to look at relations for derivatives
of amplitudes, with respect to both t and s. The former
can, of course, be obtained. trivially from the relations
for the amplitude at any t and have the effect of
eliminating the low partial waves. The latter have to
be obtained by Grst differentiating both sides of a
dispersion relation wi:th respect to s and then integrating
by parts (see Appendix 8). This leads to a dispersion
relation for the derivative of the amplitude. From this
we can get a superconvergence relation. The advantage
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of dealing with derivatives of amplitudes is that they
have better convergence properties, with a behavior at
infinity which is down by a factor of s . One disad-
vantage may be that they probably depend more on
some of the detailed structure of amplitudes. In the
case of resonances, for instance, they would presumably
depend on the shape as well as the width of a resonance.

make the usual narrow-width approximation

Imgzz ((d) =2z'rzz8((d —M II), (A7)

where co9J is the position of the particle and M9J its
reduced width, then Eqs. (A2) and (A6) give

APPENDIX A

We discuss here briefly the xE static model in the
P and D waves. The partial-wave amplitude

e" sin5
g»(~) =

g2l+1
(A1)

satis6es the crossing relation

gzz( & ) Q &II'PII'gl'I'(pl ) y

9IJI
(A2)

where 8=phase shift, co= pion energy, q'=co' —i, and
n and P are the isotopic spin-crossing ' znatrices which

are given by
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In the P wave, if we keep only the E and E*, these are
four redundant equations giving the usual result

ygf 2, g(2
——2y3/Q, 3/2 This is satished quite well by

experiment.
If we have two particles in a given state (I,J), we

again have Eq. (AS) but with &II&z&+&II', where
y9J' is the reduced width for the second particle. Sup-
pose, for instance, that we include the Xz/2'(1400)
particle (the Roper resonance) along with the nucleon
in the (2,2) state. Equation (AS) is then no longer
satisfied by the experimental widths. The only way to
rectify this is to add another particle in the (2,2) state
with y8/2, 8/2' —2+1/2, ]/2 (it is straightforward, to show
that an extra particle in any other state will only
worsen the situation). This particle is presumably more
massive then the E*. Its inclusion would improve the
sum rule (14), since we would have to add a contribu-
tion which cancels that of the Xl/2'(1400).

Turning now to the D wave, we Qnd that it is im-
possible to satisfy Eq. (AS) for all possible I and J
by keeping only d» and d» resonances. We have to
have additional resonances in the d33 and d35 states.
Indeed, Eq. (AS) reduces to the two equations

( 8 8i

—,') (A3) +8/2, 8/2 lp (zl/2, /2j8971 2/, 52/)
1 (A9)

for I=-'„—,' and by

1 —1 2l+2i

21+1 21 1
(A4)

for J=/ ——',, 1+2. We can write a dispersion relation
for g

28,/5=/25 (3 zl/2, 8/2+ 271/2, 5/2) (A 10.)

A d85 resonance would improve Eq. (14) while a d88

particle would worsen it. Equations (A9) and (A10),
together with the experimental widths of the di3 and
d» resonances, suggest that the d35 would probably be
more important than the d33 contribution.

APPENDIX 8
1 Imgzz(M )

gz I(pl) =— dpi
CO

—M

We show here how one can set up superconvergence
relations for derivatives of amplitudes. Suppose one
has a simple dispersion relation for f(s)1 " Imgzs ( pl')—

+— dp&' . (A5)
7l CO +&0 1 " Imf(s')

(s =— ds'
gp s —sSince unitarity demands that gzz(co) be bounded by

2' ', as can be seen from Eq. (A1), we must have a If we differentiate both sides with respect to s, we have
superconvergence relation for l&1

dpi'EImgzz(pl') —ImgzI( —pl')]=0. (A6)

00

f(s)=
8( 1

ds' Im f(s')—
i

Bs Es' —s/

We next make the usual assumption that the integral
is dominated by resonances and bound states. If we

ds' Imf(s')
Bs' Es' —s/'
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Integrating by parts, we obtain separated by s=so. We then have

1 Imf(go) 1 " Imf'(s')
f'(s) = — +— ds'

7I (0 s 7P ~0 s —s
(B3) ~g'+

M2+1—g/2

d$' ImB+ pw

If f'(s) decreases faster than s ' at infinity we have the
superconvergence relation

+ ds' ImB+R,«.——0. (C2)

Im f(to)+ ds' Im f'(s') =0.

The above derivation, of course, is valid only if
Im f((0) is finite. If it is not, we could still get a relation
by taking some point s= P, above s= &0. Writing Eq.
(B2) as

If we use the asymptotic form for s)so

(s+p '+«'l
ImB+a - (V) =—Z g(~)~c(~)l

Z, zs —2p,q, J

we can explicitly evaluate the second integral in
Eq. (C2). Eq. (C2) then reduces to

1t' &' ") 8 ( 1
f'(s) = —-I + ld" Imf(s'), I, I

(B5)
VIE ~ r I Bs Es —sl ng'+

M2+1—t/2

ds' ImB+pw —2p,q,

and integrating only the second integral by parts, we
have

1 && Imf(s') 1 Imf(b)
f'(s) = ds' — +-

(S —S) 7I $g—S

1 " Imf'(s')
+— ds' . (B6)

$ —$

If, again, f'(s) decreases faster than s ' at infinity,
we must have

p+ p 2+q 2~ n

X Z g(~)C(~)l I
=0. (C4)

s,z' & —2pq, i
We can now continue this expression to t=o. Using
Eq. (11) we then have exactly the result given by
Eqs. (7) and (14).

The reason for the equivalence of the above results
follows from the fact that ImB+R,«, itself satisfies a
superconvergence relation

Imf(g, )+ ds' Imf'(s') =0.
m2+X—g/2

ds' ImB+R.„.(s', t) =0 (C5)

M2+ 1—s/2

ds' ImB+(s', t) =0. (C1)

Let us now break up the integral into a low-energy
partial-wave region and high-energy Regge region

APPENDIX C

We will look at the problem of writing modified super-
convergence relations from a slightly diQerent point of
view here. The results are identical with the ones given
in Secs. II and III, however.

Suppose we again consider the 8+ amplitude and look
at some large negative value of t. Here we expect to
find a(0, so that B((c sot)ns '. We can then write
a normal superconvergence relation for 8+:

dS IlTLB Reggg =—
M2+X—&/2

ds' ImB+R,«. , (C6)

which explains the equivalence of Eqs. (C2) and (7).
It also shows why it does not matter which Regge
form one uses provided that it is a good approximation
for s)so. Finally, it explains why Eqs. (C1) and (6)
are consistent with each other for large negative t.
All we have to do is subtract Eq. (C5) from Eq. (C1)
to get Eq. (6). It is only for small t that there is a
difference, since Eq. (6) can be continued, into this
region, whereas Eq. (C1) cannot.

for large negative t, where it converges. This can be
easily shown to be true from Eq. (12). We therefore
have


